Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Respir Crit Care Med ; 206(11): 1336-1352, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2231710

RESUMEN

Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/ß) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.


Asunto(s)
COVID-19 , Humanos , Prevalencia , SARS-CoV-2 , Mucina 5B/genética , Mucina 5AC/genética , Moco/metabolismo , Pulmón/metabolismo , Receptores ErbB , ARN/metabolismo
2.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1650891

RESUMEN

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Asunto(s)
COVID-19/genética , COVID-19/patología , Pulmón/patología , SARS-CoV-2 , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/patología , Gripe Humana/virología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Orthomyxoviridae , RNA-Seq/métodos , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/patología , Carga Viral
4.
J Thromb Haemost ; 19(9): 2268-2274, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1301536

RESUMEN

BACKGROUND: A substantial proportion of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe/critical coronavirus disease 2019 (COVID-19) characterized by acute respiratory distress syndrome (ARDS) with thrombosis. OBJECTIVES: We tested the hypothesis that SARS-CoV-2--induced upregulation of tissue factor (TF) expression may be responsible for thrombus formation in COVID-19. METHODS: We compared autopsy lung tissues from 11 patients with COVID-19--associated ARDS with samples from 6 patients with ARDS from other causes (non-COVID-19 ARDS) and 11 normal control lungs. RESULTS: Dual RNA in situ hybridization for SARS-CoV-2 and TF identified sporadic clustered SARS-CoV-2 with prominent co-localization of SARS-CoV-2 and TF RNA. TF expression was 2-fold higher in COVID-19 than in non-COVID-19 ARDS lungs (P = .017) and correlated with the intensity of SARS-CoV-2 staining (R2  = .36, P = .04). By immunofluorescence, TF protein expression was 2.1-fold higher in COVID-19 versus non-COVID-19 ARDS lungs (P = .0048) and 11-fold (P < .001) higher than control lungs. Fibrin thrombi and thrombi positive for platelet factor 4 (PF4) were found in close proximity to regions expressing TF in COVID-19 ARDS lung, and correlated with TF expression (fibrin, R2  = .52, P < .001; PF4, R2  = .59, P < .001). CONCLUSIONS: These data suggest that upregulation of TF expression is associated with thrombus formation in COVID-19 lungs and could be a key therapeutic target. Correlation of TF expression with SARS-CoV-2 in lungs of COVID-19 patients also raises the possibility of direct TF induction by the virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pulmón , Tromboplastina , Regulación hacia Arriba
5.
Sci Rep ; 11(1): 12606, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1270673

RESUMEN

Increasing evidence has shown that Coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunologic response. We aimed to assess the differences in inflammatory cytokines in COVID-19 patients compared to contemporaneously hospitalized controls and then analyze the relationship between these cytokines and the development of Acute Respiratory Distress Syndrome (ARDS), Acute Kidney Injury (AKI) and mortality. In this cohort study of hospitalized patients, done between March third, 2020 and April first, 2020 at a quaternary referral center in New York City we included adult hospitalized patients with COVID-19 and negative controls. Serum specimens were obtained on the first, second, and third hospital day and cytokines were measured by Luminex. Autopsies of nine cohort patients were examined. We identified 90 COVID-19 patients and 51 controls. Analysis of 48 inflammatory cytokines revealed upregulation of macrophage induced chemokines, T-cell related interleukines and stromal cell producing cytokines in COVID-19 patients compared to the controls. Moreover, distinctive cytokine signatures predicted the development of ARDS, AKI and mortality in COVID-19 patients. Specifically, macrophage-associated cytokines predicted ARDS, T cell immunity related cytokines predicted AKI and mortality was associated with cytokines of activated immune pathways, of which IL-13 was universally correlated with ARDS, AKI and mortality. Histopathological examination of the autopsies showed diffuse alveolar damage with significant mononuclear inflammatory cell infiltration. Additionally, the kidneys demonstrated glomerular sclerosis, tubulointerstitial lymphocyte infiltration and cortical and medullary atrophy. These patterns of cytokine expression offer insight into the pathogenesis of COVID-19 disease, its severity, and subsequent lung and kidney injury suggesting more targeted treatment strategies.


Asunto(s)
COVID-19/mortalidad , COVID-19/fisiopatología , Citocinas/sangre , Lesión Renal Aguda/sangre , Lesión Renal Aguda/patología , Lesión Renal Aguda/virología , Anciano , COVID-19/sangre , COVID-19/terapia , Estudios de Casos y Controles , Síndrome de Liberación de Citoquinas/virología , Femenino , Hospitales , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Respiración Artificial , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/virología , Resultado del Tratamiento
6.
Nature ; 593(7860): 564-569, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1155701

RESUMEN

Recent studies have provided insights into the pathology of and immune response to COVID-191-8. However, a thorough investigation of the interplay between infected cells and the immune system at sites of infection has been lacking. Here we use high-parameter imaging mass cytometry9 that targets the expression of 36 proteins to investigate the cellular composition and spatial architecture of acute lung injury in humans (including injuries derived from SARS-CoV-2 infection) at single-cell resolution. These spatially resolved single-cell data unravel the disordered structure of the infected and injured lung, alongside the distribution of extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects predominantly alveolar epithelial cells and induces a localized hyperinflammatory cell state that is associated with lung damage. We leverage the temporal range of fatal outcomes of COVID-19 in relation to the onset of symptoms, which reveals increased macrophage extravasation and increased numbers of mesenchymal cells and fibroblasts concomitant with increased proximity between these cell types as the disease progresses-possibly as a result of attempts to repair the damaged lung tissue. Our data enable us to develop a biologically interpretable landscape of lung pathology from a structural, immunological and clinical standpoint. We use this landscape to characterize the pathophysiology of the human lung from its macroscopic presentation to the single-cell level, which provides an important basis for understanding COVID-19 and lung pathology in general.


Asunto(s)
COVID-19/patología , COVID-19/virología , Progresión de la Enfermedad , Pulmón/patología , Pulmón/virología , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , COVID-19/mortalidad , COVID-19/fisiopatología , Humanos , Inflamación/patología , Inflamación/fisiopatología , Inflamación/virología , Pulmón/fisiopatología , Macrófagos/inmunología , Neutrófilos/inmunología , Factores de Tiempo , Tropismo Viral
7.
Hum Pathol ; 106: 106-116, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-927637

RESUMEN

The purpose of this study was to examine the deltoid skin biopsy in twenty-three patients with coronavirus disease 2019 (COVID-19), most severely ill, for vascular complement deposition and correlate this with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA and protein localization and ACE2 expression. Deltoid skin microvascular complement screening has been applied to patients with various systemic complement-mediated microvascular syndromes, best exemplified by atypical hemolytic uremic syndrome. In 21 of 23 cases, substantial microvascular deposition of complement components was identified. The two patients without significant complement deposition included one patient with moderate disease and a severely ill patient who although on a ventilator for a day was discharged after 3 days. The dominant microvascular complement immunoreactant identified was the terminal membranolytic attack complex C5b-9. Microvascular complement deposition strongly colocalized in situ with the SARS-CoV-2 viral proteins including spike glycoproteins in the endothelial cells as well as the viral receptor ACE2 in lesional and nonlesional skin; viral RNA was not evident. Microvascular SARS-CoV-2 viral protein, complement, and ACE2 expression was most conspicuous in the subcutaneous fat. Although the samples from severely ill patients with COVID-19 were from grossly normal skin, light microscopically focal microvascular abnormalities were evident that included endothelial cell denudement, basement membrane zone reduplication, and small thrombi. It is concluded that complement activation is common in grossly normal skin, especially in the subcutaneous fat which may provide a link between severe disease and obesity, in people with severe COVID-19, and the strong colocalization with the ACE2 receptor and viral capsid proteins without viral RNA suggests that circulating viral proteins (ie, pseudovirions) may dock onto the endothelial of these microvessels and induce complement activation.


Asunto(s)
COVID-19/virología , Células Endoteliales/virología , Microvasos/virología , SARS-CoV-2/patogenicidad , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Activación de Complemento/inmunología , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Microvasos/metabolismo , Persona de Mediana Edad , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , ARN Viral/genética
8.
medRxiv ; 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: covidwho-915974

RESUMEN

Recent studies have provided insights into the pathology and immune response to coronavirus disease 2019 (COVID-19) 1-8 . However thorough interrogation of the interplay between infected cells and the immune system at sites of infection is lacking. We use high parameter imaging mass cytometry 9 targeting the expression of 36 proteins, to investigate at single cell resolution, the cellular composition and spatial architecture of human acute lung injury including SARS-CoV-2. This spatially resolved, single-cell data unravels the disordered structure of the infected and injured lung alongside the distribution of extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects predominantly alveolar epithelial cells and induces a localized hyper-inflammatory cell state associated with lung damage. By leveraging the temporal range of COVID-19 severe fatal disease in relation to the time of symptom onset, we observe increased macrophage extravasation, mesenchymal cells, and fibroblasts abundance concomitant with increased proximity between these cell types as the disease progresses, possibly as an attempt to repair the damaged lung tissue. This spatially resolved single-cell data allowed us to develop a biologically interpretable landscape of lung pathology from a structural, immunological and clinical standpoint. This spatial single-cell landscape enabled the pathophysiological characterization of the human lung from its macroscopic presentation to the single-cell, providing an important basis for the understanding of COVID-19, and lung pathology in general.

9.
Pathobiology ; 88(1): 56-68, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-781258

RESUMEN

BACKGROUND: A novel coronavirus, SARS-CoV-2, was identified in Wuhan, China in late 2019. This virus rapidly spread around the world causing disease ranging from minimal symptoms to severe pneumonia, which was termed coronavirus disease (i.e., COVID). Postmortem examination is a valuable tool for studying the pathobiology of this new infection. METHODS: We report the clinicopathologic findings from 32 autopsy studies conducted on patients who died of COVID-19 including routine gross and microscopic examination with applicable special and immunohistochemical staining techniques. RESULTS: SARS-CoV-2 infection was confirmed by nasopharyngeal RT-PCR in 31 cases (97%) and by immunohistochemical staining for SARS-CoV-2 spike-protein in the lung in the remaining 1 case (3%). The ethnically diverse cohort consisted of 22 males and 10 females with a mean age of 68 years (range: 30-100). Patients most commonly presented with cough (17 [55%]), shortness of breath (26 [81%]), and a low-grade fever (17 [55%]). Thirty-one (97%) of the patients had at least 1 comorbidity (mean = 4). Twenty-eight patients (88%) had widespread thromboembolic disease, as well as diffuse alveolar damage (30 [94%]), diabetic nephropathy (17 [57%]) and acute tubular injury. Patterns of liver injury were heterogeneous, featuring 10 (36%) with frequent large basophilic structures in sinusoidal endothelium, and increased immunoblast-like cells in lymph nodes. CONCLUSION: This series of autopsies from patients with COVID-19 confirms the observation that the majority of severely affected patients have significant pulmonary pathology. However, many patients also have widespread microscopic thromboses, as well as characteristic findings in the liver and lymph nodes.


Asunto(s)
COVID-19/virología , Pulmón/virología , Adulto , Anciano , Autopsia/métodos , COVID-19/patología , Femenino , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Blood ; 136(10): 1169-1179, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: covidwho-748867

RESUMEN

COVID-19 affects millions of patients worldwide, with clinical presentation ranging from isolated thrombosis to acute respiratory distress syndrome (ARDS) requiring ventilator support. Neutrophil extracellular traps (NETs) originate from decondensed chromatin released to immobilize pathogens, and they can trigger immunothrombosis. We studied the connection between NETs and COVID-19 severity and progression. We conducted a prospective cohort study of COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17). We measured plasma myeloperoxidase (MPO)-DNA complexes (NETs), platelet factor 4, RANTES, and selected cytokines. Three COVID-19 lung autopsies were examined for NETs and platelet involvement. We assessed NET formation ex vivo in COVID-19 neutrophils and in healthy neutrophils incubated with COVID-19 plasma. We also tested the ability of neonatal NET-inhibitory factor (nNIF) to block NET formation induced by COVID-19 plasma. Plasma MPO-DNA complexes increased in COVID-19, with intubation (P < .0001) and death (P < .0005) as outcome. Illness severity correlated directly with plasma MPO-DNA complexes (P = .0360), whereas Pao2/fraction of inspired oxygen correlated inversely (P = .0340). Soluble and cellular factors triggering NETs were significantly increased in COVID-19, and pulmonary autopsies confirmed NET-containing microthrombi with neutrophil-platelet infiltration. Finally, COVID-19 neutrophils ex vivo displayed excessive NETs at baseline, and COVID-19 plasma triggered NET formation, which was blocked by nNIF. Thus, NETs triggering immunothrombosis may, in part, explain the prothrombotic clinical presentations in COVID-19, and NETs may represent targets for therapeutic intervention.


Asunto(s)
Infecciones por Coronavirus/complicaciones , Trampas Extracelulares/inmunología , Neutrófilos/inmunología , Neumonía Viral/complicaciones , Trombosis/complicaciones , Adulto , Anciano , Betacoronavirus/inmunología , Plaquetas/inmunología , Plaquetas/patología , Proteínas Sanguíneas/inmunología , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infiltración Neutrófila , Neutrófilos/patología , Pandemias , Peroxidasa/inmunología , Neumonía Viral/inmunología , Neumonía Viral/patología , Estudios Prospectivos , SARS-CoV-2 , Trombosis/inmunología , Trombosis/patología
11.
Mod Pathol ; 33(11): 2156-2168, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-744362

RESUMEN

SARS-CoV-2, the etiologic agent of COVID-19, is a global pandemic with substantial mortality dominated by acute respiratory distress syndrome. We systematically evaluated lungs of 68 autopsies from 3 institutions in heavily hit areas (2 USA, 1 Italy). Detailed evaluation of several compartments (airways, alveolar walls, airspaces, and vasculature) was performed to determine the range of histologic features. The cohort consisted of 47 males and 21 females with a median age of 73 years (range 30-96). Co-morbidities were present in most patients with 60% reporting at least three conditions. Tracheobronchitis was frequently present, independent from intubation or superimposed pneumonia. Diffuse alveolar damage (DAD) was seen in 87% of cases. Later phases of DAD were less frequent and correlated with longer duration of disease. Large vessel thrombi were seen in 42% of cases but platelet (CD61 positive) and/or fibrin microthrombi were present at least focally in 84%. Ultrastructurally, small vessels showed basal membrane reduplication and significant endothelial swelling with cytoplasmic vacuolization. In a subset of cases, virus was detected using different tools (immunohistochemistry for SARS-CoV-2 viral spike protein, RNA in situ hybridization, lung viral culture, and electron microscopy). Virus was seen in airway epithelium and type 2 pneumocytes. IHC or in situ detection, as well as viable form (lung culture positive) was associated with the presence of hyaline membranes, usually within 2 weeks but up to 4 weeks after initial diagnosis. COVID-19 pneumonia is a heterogeneous disease (tracheobronchitis, DAD, and vascular injury), but with consistent features in three centers. The pulmonary vasculature, with capillary microthrombi and inflammation, as well as macrothrombi, is commonly involved. Viral infection in areas of ongoing active injury contributes to persistent and temporally heterogeneous lung damage.


Asunto(s)
Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Pulmón/patología , Pulmón/virología , Neumonía Viral/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Betacoronavirus , COVID-19 , Estudios de Cohortes , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Pandemias , Neumonía Viral/virología , Estudios Retrospectivos , SARS-CoV-2
12.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: covidwho-381993

RESUMEN

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Neumonía Viral/patología , Neumonía Viral/virología , Sistema Respiratorio/virología , Genética Inversa/métodos , Anciano , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Fibrosis Quística/patología , ADN Recombinante , Femenino , Furina/metabolismo , Humanos , Inmunización Pasiva , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Mucosa Nasal/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Sistema Respiratorio/patología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Células Vero , Virulencia , Replicación Viral , Sueroterapia para COVID-19
13.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-72158

RESUMEN

Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10-15% of patients progresses to acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature are presented supporting the hypothesis that a little known yet powerful function of neutrophils-the ability to form neutrophil extracellular traps (NETs)-may contribute to organ damage and mortality in COVID-19. We show lung infiltration of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/patología , Trampas Extracelulares , Enfermedades Pulmonares , Neutrófilos/patología , Neumonía Viral/patología , COVID-19 , Infecciones por Coronavirus/complicaciones , Citocinas/metabolismo , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Pandemias , Neumonía Viral/complicaciones , SARS-CoV-2
14.
Transl Res ; 220: 1-13, 2020 06.
Artículo en Inglés | MEDLINE | ID: covidwho-60383

RESUMEN

Acute respiratory failure and a systemic coagulopathy are critical aspects of the morbidity and mortality characterizing infection with severe acute respiratory distress syndrome-associated coronavirus-2, the etiologic agent of Coronavirus disease 2019 (COVID-19). We examined skin and lung tissues from 5 patients with severe COVID-19 characterized by respiratory failure (n= 5) and purpuric skin rash (n = 3). COVID-19 pneumonitis was predominantly a pauci-inflammatory septal capillary injury with significant septal capillary mural and luminal fibrin deposition and permeation of the interalveolar septa by neutrophils. No viral cytopathic changes were observed and the diffuse alveolar damage (DAD) with hyaline membranes, inflammation, and type II pneumocyte hyperplasia, hallmarks of classic acute respiratory distress syndrome, were not prominent. These pulmonary findings were accompanied by significant deposits of terminal complement components C5b-9 (membrane attack complex), C4d, and mannose binding lectin (MBL)-associated serine protease (MASP)2, in the microvasculature, consistent with sustained, systemic activation of the complement pathways. The purpuric skin lesions similarly showed a pauci-inflammatory thrombogenic vasculopathy, with deposition of C5b-9 and C4d in both grossly involved and normally-appearing skin. In addition, there was co-localization of COVID-19 spike glycoproteins with C4d and C5b-9 in the interalveolar septa and the cutaneous microvasculature of 2 cases examined. In conclusion, at least a subset of sustained, severe COVID-19 may define a type of catastrophic microvascular injury syndrome mediated by activation of complement pathways and an associated procoagulant state. It provides a foundation for further exploration of the pathophysiologic importance of complement in COVID-19, and could suggest targets for specific intervention.


Asunto(s)
Betacoronavirus , Proteínas del Sistema Complemento/metabolismo , Infecciones por Coronavirus/complicaciones , Microvasos/patología , Neumonía Viral/complicaciones , Insuficiencia Respiratoria/etiología , Trombosis/etiología , Adulto , Anciano , COVID-19 , Activación de Complemento/fisiología , Infecciones por Coronavirus/patología , Femenino , Humanos , Masculino , Microvasos/virología , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , Púrpura/etiología , Púrpura/patología , Púrpura/virología , Insuficiencia Respiratoria/patología , SARS-CoV-2 , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA